Econometric Modelling Based on Pattern Recognition via the Fuzzy c-Means Clustering Algorithm
نویسندگان
چکیده
In this paper we consider the use of fuzzy modelling in the context of econometric analysis of both time-series and cross-section data. We discuss and demonstrate a semi-parametric methodology for model identification and estimation that is based on the Fuzzy c-Means algorithm that is widely used in the context of pattern recognition, and the Takagi-Sugeno approach to modelling fuzzy systems. This methodology is exceptionally flexible and provides a computationally tractable method of dealing with non-linear models in high dimensions. In this respect it has distinct theoretical advantages over non-parametric kernel regression, and we find that these advantages also hold empirically in terms of goodness-of-fit in a selection of economic applications. Acknowledgement: We are grateful to George Judge, Joris Pinkse, Ken White, and participants in the University of Victoria Econometrics Colloquium for their helpful comments.
منابع مشابه
Application of Pattern Recognition Algorithms for Clustering Power System to Voltage Control Areas and Comparison of Their Results
Finding the collapse susceptible portion of a power system is one of the purposes of voltage stability analysis. This part which is a voltage control area is called the voltage weak area. Determining the weak area and adjecent voltage control areas has special importance in the improvement of voltage stability. Designing an on-line corrective control requires the voltage weak area to be determi...
متن کاملApplication of Pattern Recognition Algorithms for Clustering Power System to Voltage Control Areas and Comparison of Their Results
Finding the collapse susceptible portion of a power system is one of the purposes of voltage stability analysis. This part which is a voltage control area is called the voltage weak area. Determining the weak area and adjecent voltage control areas has special importance in the improvement of voltage stability. Designing an on-line corrective control requires the voltage weak area to be determi...
متن کاملEstimation of Seigniorage Laffer curve in IRAN: A Fuzzy C-Means Clustering Framework
There are two sources for governments to raise their revenues. The first is the direct taxation levied on output, and the second is seigniorage. Seigniorage is also known as printing new money and is defined as the value of real resources acquired by the government through its power of sovereignty on its monopoly of printing money. The purpose of this paper is to examine the Laffer curve for Se...
متن کاملADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE
The tunnel boring machine (TBM) penetration rate estimation is one of the crucial and complex tasks encountered frequently to excavate the mechanical tunnels. Estimating the machine penetration rate may reduce the risks related to high capital costs typical for excavation operation. Thus establishing a relationship between rock properties and TBM pe...
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کامل